Simulation, Analysis, and Experimentation of the Compliant Finger as a Part of Hand-Compliant Mechanism Development

Author:

Stojiljković Dušan1ORCID,Milošević Maša1,Ristić-Durrant Danijela2ORCID,Nikolić Vlastimir1,Pavlović Nenad T.1,Ćirić Ivan1,Ivačko Nikola1

Affiliation:

1. Faculty of Mechanical Engineering, University of Niš, 18000 Niš, Serbia

2. Institute of Automation, University of Bremen, 28359 Bremen, Germany

Abstract

Compliant mechanisms are gaining popularity in many different fields, such as in microelectromechanical systems (MEMS), medical applications and health care, opto-mechatronic technology, aerospace engineering, and semiconductor equipment. One of the areas for utilizing compliant mechanisms is building models of human hand counterparts. These models are often used as grasping and rehabilitation devices. Because of their properties, creating a human hand counterpart with compliant mechanisms is a much better choice compared with the models with traditional mechanisms; it looks more realistic, and its movements are much more natural compared with models with a traditional mechanism. A method of modeling and designing such a bio-inspired mechanism, as well as its experimental analysis with various forces applied, is presented in this paper. Two prototypes of the compliant fingers were obtained by 3D printing, and the calculation of the bending angle values was achieved by applying image processing to camera images of the compliant fingers’ prototypes. Image processing was conducted on images taken for both loaded and unloaded 3D-printed compliant finger prototype positions. Finally, these bending angle results are compared with the results obtained by Finite Element Method (FEM) analysis and experimental results acquired by a digital protractor.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3