Fan Fault Diagnosis Using Acoustic Emission and Deep Learning Methods

Author:

Ciaburro Giuseppe1ORCID,Padmanabhan Sankar2,Maleh Yassine3ORCID,Puyana-Romero Virginia45ORCID

Affiliation:

1. Department of Architecture and Industrial Design, Università degli Studi della Campania Luigi Vanvitelli, 81031 Aversa, Italy

2. Department of Electronics and Communication Engineering, Hindustan Institute of Technology and Science, Chennai 603103, TN, India

3. Ecole Nationale des Sciences Appliquée (ENSA) Khouribga, Sultan Moulay Slimane University, Beni Mellal 25000, Morocco

4. Department of Sound and Acoustic Engineering, Universidad de Las Américas, Quito EC170125, Ecuador

5. Laboratory of Phonetics and Acoustics, Institute of Applied Linguistics, Universidad de Cádiz, 11002 Cádiz, Spain

Abstract

The modern conception of industrial production recognizes the increasingly crucial role of maintenance. Currently, maintenance is thought of as a service that aims to maintain the efficiency of equipment and systems while also taking quality, energy efficiency, and safety requirements into consideration. In this study, a new methodology for automating the fan maintenance procedures was developed. An approach based on the recording of the acoustic emission and the failure diagnosis using deep learning was evaluated for the detection of dust deposits on the blades of an axial fan. Two operating conditions have been foreseen: No-Fault, and Fault. In the No-Fault condition, the fan blades are perfectly clean while in the Fault condition, deposits of material have been artificially created. Utilizing a pre-trained network (SqueezeNet) built on the ImageNet dataset, the acquired data were used to build an algorithm based on convolutional neural networks (CNN). The transfer learning applied to the images of the spectrograms extracted from the recordings of the acoustic emission of the fan, in the two operating conditions, returned excellent results (accuracy = 0.95), confirming the excellent performance of the methodology.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction,Communication

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3