Acoustic Pressure Amplification through In-Duct Sonic Black Holes

Author:

Maury Cédric1,Bravo Teresa2ORCID,Amielh Muriel3,Mazzoni Daniel3

Affiliation:

1. Laboratoire de Mécanique et d’Acoustique (LMA), Centrale Marseille, Aix Marseille University, CNRS, 38 rue Frédéric Joliot-Curie, 13013 Marseille, France

2. Instituto de Tecnologías Físicas y de la Información (ITEFI), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 144, 28006 Madrid, Spain

3. Institut de Recherche sur les Phénomènes Hors-Equilibre (IRPHE), Centrale Marseille, Aix Marseille University, CNRS, 49 rue Frédéric Joliot-Curie, 13013 Marseille, France

Abstract

Acoustic detection of machinery defaults from in-duct measurements is of practical importance in many areas, such as the health assessment of turbines in ventilation systems or engine testing in the surface and air transport sectors. This approach is, however, impeded by the low signal-to-noise ratio (SNR) observed in such environments. In this study, it is proposed to exploit the slow sound effect of Sonic Black Hole (SBH) ducted silencers to enhance the sensing of incident pulse acoustic signals with low SNR. It is found from transfer matrix and finite element modelling that fully opened SBH silencers with perforated skin interfaces are able to substantially enhance an incident pulse amplitude while channeling an air flow. We demonstrate that the graded depths of the SBH cavities provide rainbow spectral decomposition and amplification of the incident pulse frequency components, provided that impedance matching, slow sound, and critically coupled conditions are met. In-duct experiments showed the ability of a 3D printed SBH silencer to simultaneously enhance acoustic sensing and fully trap the pulse spectral components in the SBH cavities in the presence of a low-speed flow. This study opens up new avenues for the development of dual-purpose silencers designed for acoustic monitoring and noise control in duct systems without obstructing the air flow.

Funder

Ministerio de Ciencia, Innovación y Universidades

Initiative d'Excellenced'Aix-Marseille Université

Publisher

MDPI AG

Reference30 articles.

1. IEA (2024, April 26). International Energy Agency: Energy Efficiency Report. November 2023. Available online: https://www.iea.org/reports/energy-efficiency-2023.

2. European Parliament (2010). Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (Recast), European Parliament.

3. (2019). Energy Performance of Buildings—Ventilation for Buildings—Part 1: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor air Quality, Thermal Environment, Lighting and Acoustics—Module M1–6 (Standard No. EN 16798-1).

4. Tran, V.V., Park, D., and Lee, Y.-C. (2020). Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality. Int. J. Environ. Res. Public Health, 17.

5. A critical review on the adaptability of ventilation systems: Current problems, solutions and opportunities;Seuntjens;Build. Environ.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3