Development of a Pipeline Inspection Robot for the Standard Oil Pipeline of China National Petroleum Corporation

Author:

Li Hui,Li Ruiqin,Zhang Jianwei,Zhang Pengyu

Abstract

The periodic inspection for oil pipelines is required due to the deterioration over time. A multitude of factors brings such a deterioration, from corrosion, leaks, to cracks, which may lead to blowbacks and cause the damages for operators and the environments. With the progress of robotics technology, various types of mobile robots and mechanisms are designed to cope with this issue. Rather than the assignment of human workers in hazardous environments, the deployment of such kinds of inspection robots can take on this duty more time-efficiently and safely, preventing the human workers from the high-risk of the inspection task in the oil pipelines. This paper presents a novel design of a mobile robot for oil pipeline inspection, which is cooperated with the China National Petroleum Corporation (CNPC). With the improvement of the previous inspection robot used in CNPC’s standard oil pipelines, the newly designed robot is composed of six groups of symmetrical supporting wheels, and a more powerful motors as well as a more advanced control system. This new design endows the oil pipeline inspection robot with better performance on six aspects: traction, obstacle-adaptivity, operation endurance, gradeability, visual perception, and stability. The field testing results at multiple oil transfer stations across several months demonstrate the reliability of this mobile robot under various severe situations in China and validate its performance in the studied aspects.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference26 articles.

1. 2018 Annual Report,2018

2. 2018 Corporate Social Responsibility Report,2018

3. Development of an Autonomous Robot for Gas Storage Spheres Inspection

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a Capsule-Type Inspection Robot Customized for Ondol Pipelines;Applied Sciences;2024-09-05

2. Mechanism design and mechanical analysis of pipeline inspection robot;Industrial Robot: the international journal of robotics research and application;2024-09-03

3. Locomotion analysis of a crawling wave robot in circular canal;Mechanism and Machine Theory;2024-09

4. Robotical Automation in CNC Machine Tools: A Review;Acta Mechanica et Automatica;2024-07-25

5. Design of a Pipeline Inside Anti-corrosion Robot Using Axiomatic Design Method;2024 IEEE International Conference on Real-time Computing and Robotics (RCAR);2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3