Author:
Wang Yongming,Wang Jinlong,Zhou Qi,Feng Sai,Wang Xiaomin
Abstract
Purpose
This study aims to address the issues of limited pipe diameter adaptability and low inspection efficiency of current pipeline inspection robots, a new type of pipeline inspection robot capable of adapting to various pipe diameters was designed.
Design/methodology/approach
The diameter-changing mechanism uses a multilink elastic telescopic structure consisting of telescopic rods, connecting rods and wheel frames, driven by a single motor with a helical drive scheme. A geometric model of the position relationships of the hinge points was established based on the two extreme positions of the diameter-changing mechanism.
Findings
A pipeline inspection robot was designed using a simple linkage agency, which significantly reduced the weight of the robot and enhanced its adaptive pipe diameter ability. The analysis determined that the robot could accommodate pipe diameters ranging from 332 mm to 438 mm. A static equilibrium equation was established for the robot in the hovering state, and the minimum pressing force of the wheels against the pipe wall was determined to be 36.68 N. After experimental testing, the robots could successfully pass a height of 15 mm, demonstrating the good obstacle capacity of the robot.
Practical implications
This paper explores and proposes a new type of multilink elastic telescopic variable diameter pipeline inspection robot, which has the characteristics of strong adaptability and flexible operation, which makes it more competitive in the field of pipeline inspection robots and has great potential market value.
Originality/value
The robot is characterized by the innovative design of a multilink elastic telescopic structure and the use of a single motor to drive the wheel for spiral motion. On the basis of reducing the weight of the robot, it has good pipeline adaptability, climbing ability and obstacle-crossing ability.
Reference14 articles.
1. Prototype design and simulation analysis of oil-gas pipeline inspection robot;Machinery Design & Manufacture,2021
2. Development history and prospect of oil & gas storage and transportation industry in China;Oil & Gas Storage and Transportation,2019
3. A review: technological trends and development direction of pipeline robot systems;Journal of Intelligent & Robotic Systems,2022
4. Design of adaptive wheel driven pipeline inspection robot,2022
5. Development of a pipeline inspection robot for the standard oil pipeline of China national petroleum corporation;Applied Sciences,2020