Numerical Optimization of a Four-Cylinder Double-Acting Stirling Engine Based on Non-Ideal Adiabatic Thermodynamic Model and SCGM Method

Author:

Cheng Chin-Hsiang,Tan Yi-Han

Abstract

The aim of this study is to optimize a four-cylinder, double-acting α-type Stirling engine with wobble-yoke mechanism using an optimization scheme incorporated with an efficient thermodynamic model. In this study, the non-ideal adiabatic thermodynamic model is improved by taking into account factors including pressure drops due to the sudden expansion or contraction of flow cross-sectional areas in the engine, multiple nodes in the regenerator adopted to accurately capture the temperature gradient in the regenerator, and the dependence of the transport properties (thermal conductivity and dynamic viscosity) of the working fluid on temperature and pressure. A parametric analysis is firstly performed to identify the designed parameters that need to be optimized. In this study, engine optimization is carried out by using the simplified conjugate-gradient method (SCGM). The effects of the weighting coefficients of the objective function are studied. For a particular case considered, the optimization successfully elevates the power output from 1062.56 to 1659.72 W, and thermal efficiency from 27.41% to 37.22%. Furthermore, the robustness of the optimization method is tested by giving different sets of initial guesses. It is found that the present approach can stably lead to the same optimal design and is independent of the initial guess.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference29 articles.

1. Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty,2018

2. A review of solar-powered Stirling engines and low temperature differential Stirling engines

3. Stirling Engine Configuration Selection

4. A Compendium of Solar Dish/Stirling Technology;Stine,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3