Numerical Optimization of the β-Type Stirling Engine Performance Using the Variable-Step Simplified Conjugate Gradient Method

Author:

Cheng Chin-HsiangORCID,Phung Duc-Thuan

Abstract

This study focuses on optimizing a 100-W-class β-Type Stirling engine by combining the modified thermodynamic model and the variable-step simplified conjugate gradient (VSCGM) method. For the modified thermodynamic model, non-uniform pressure is directly introduced into the energy equation, so the indicated power and heat transfer rates can reach energy balance while the VSCGM is an updated version of the simplified conjugate gradient method (SCGM) with adaptive increments and step lengths to the optimization process; thus, it requires fewer iterations to reach the optimal solution than the SCGM. For the baseline case, the indicated power progressively raises from 88.2 to 210.2 W and the thermal efficiency increases from 34.8 to 46.4% before and after optimization, respectively. The study shows the VSCGM possesses robust property. All optimal results from the VSCGM are well-matched with those of the computational fluid dynamics (CFD) model. Heating temperature and rotation speed have positive effects on optimal engine performance. The optimal indicated power rises linearly with the charged pressure, whereas the optimal thermal efficiency tends to decrease. The study also points out that results of the modified thermodynamic model with fixed values of unknowns agree well with the CFD results at points far from the baseline case.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3