Modeling of Thermal-Lag Engine with Validation by Experimental Data

Author:

Cheng Chin-HsiangORCID,Phung Duc-ThuanORCID

Abstract

Thermal-lag engines are external combustion engines with a single moving piston. This feature leads to lower manufacturing and maintenance costs than traditional Stirling engines. Although the original concept of thermal-lag engines was invented roughly 35 years ago, the information on thermal-lag engines is still limited. Therefore, this study focuses on thermal-lag engine performance by developing a three-dimensional computational fluid dynamics (CFD) model. The grid independence check and the time step independence check are firstly performed to select the number of elements and size of the time step for simulation. The CFD model is then validated by the experimental data, which were collected by measuring an existing prototype engine. It has been found that the CFD predictions are well fitted to the experimental data over the range of engine speed from 200 to 1600 rpm at temperatures of 1173 or 1273 K. Furthermore, the CFD model predicts that the maximum engine power is 21.1 W while the prototype engine practically generates the highest power of 22.35 W at 1000 rpm and 1273 K. Finally, a further parametric study shows that crank radius, piston diameter, working gas mass, working gas species, and heating temperature significantly affect engine power.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference33 articles.

1. Piston Engine-Based Power Plants

2. Modern energy conversion technologies;Islam,2020

3. Small and micro combined heat and power (CHP) systems for the food and beverage processing industries;Varbanov,2011

4. Development of Stirling Engine Heat Pump;Nagaoka,1990

5. A Nonlinear Non-dimensional Dynamic Model for Free Piston Thermal-lag Stirling Engine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3