Physicochemical, Rheological, In-Vitro Digestibility, and Emulsifying Properties of Starch Extracted from Pineapple Stem Agricultural Waste

Author:

Sriprablom Jiratthitikan1,Suphantharika Manop2ORCID,Smith Siwaporn Meejoo3,Amornsakchai Taweechai3ORCID,Pinyo Jukkrapong4,Wongsagonsup Rungtiwa1ORCID

Affiliation:

1. Division of Food Technology, Kanchanaburi Campus, Mahidol University, Kanchanaburi 71150, Thailand

2. Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand

3. Center of Sustainable Energy and Green Materials and Department of Chemistry, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand

4. Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand

Abstract

In this study, the physicochemical, rheological, in vitro starch digestibility, and emulsifying properties of starch extracted from pineapple stem agricultural waste were investigated in comparison with commercial cassava, corn, and rice starches. Pineapple stem starch had the highest amylose content (30.82%), which contributed to the highest pasting temperature (90.22 °C) and the lowest paste viscosity. It had the highest gelatinization temperatures, gelatinization enthalpy, and retrogradation. Pineapple stem starch gel had the lowest freeze–thaw stability, as evidenced by the highest syneresis value of 53.39% after five freeze–thaw cycles. Steady flow tests showed that pineapple stem starch gel (6%, w/w) exhibited the lowest consistency coefficient (K) and the highest flow behavior index (n), while dynamic viscoelastic measurements gave the gel strength in the following order: rice > corn > pineapple stem > cassava starch gel. Interestingly, pineapple stem starch provided the highest slowly digestible starch (SDS) (48.84%) and resistant starch (RS) (15.77%) contents compared to other starches. The oil-in-water (O/W) emulsion stabilized with gelatinized pineapple stem starch exhibited higher emulsion stability than that stabilized with gelatinized cassava starch. Pineapple stem starch could therefore be used as a promising source of nutritional SDS and RS, and as an emulsion stabilizer for food applications.

Funder

Mahidol University

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3