Effects of Plasma-Activated Water Treatment on the Inactivation of Microorganisms Present on Cherry Tomatoes and in Used Wash Solution

Author:

Lee Gaeul1,Choi Sung-Wook1,Yoo Miyoung2ORCID,Chang Hyun-Joo1ORCID,Lee Nari1ORCID

Affiliation:

1. Food Safety and Distribution Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Wanju-gun 55365, Jeollabuk-do, Republic of Korea

2. Food Standard Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Wanju-gun 55365, Jeollabuk-do, Republic of Korea

Abstract

Herein, we investigated the potential of plasma-activated water (PAW) as a wash solution for the microbial decontamination of cherry tomatoes. We analyzed the efficacy of PAW as a bactericidal agent based on reactive species and pH. Immersion for 5 min in PAW15 (generated via plasma activation for 15 min) was determined as optimal for microbial decontamination of fresh produce. The decontamination efficacy of PAW15 exceeded those of mimic solutions with equivalent reactive species concentrations and pH (3.0 vs. 1.7 log reduction), suggesting that the entire range of plasma-derived reactive species participates in decontamination rather than a few reactive species. PAW15-washing treatment achieved reductions of 6.89 ± 0.36, 7.49 ± 0.40, and 5.60 ± 0.05 log10 CFU/g in the counts of Bacillus cereus, Salmonella sp., and Escherichia coli O157:H7, respectively, inoculated on the surface of cherry tomatoes, with none of these strains detected in the wash solution. During 6 days of 25 °C storage post-washing, the counts of aerobic bacteria, yeasts, and molds were below the detection limit. However, PAW15 did not significantly affect the viability of RAW264.7 cells. These results demonstrate that PAW effectively inactivates microbes and foodborne pathogens on the surface of cherry tomatoes and in the wash solution. Thus, PAW could be used as an alternative wash solution in the fresh produce industry without cross-contamination during washing and environmental contamination by foodborne pathogens or potential risks to human health.

Funder

Rural Development Administration, Republic of Korea

Korea Food Research Institute

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3