Characterization of Nanoemulsions Stabilized with Different Emulsifiers and Their Encapsulation Efficiency for Oregano Essential Oil: Tween 80, Soybean Protein Isolate, Tea Saponin, and Soy Lecithin

Author:

Zhao Siqi1,Wang Ziyi1,Wang Xuefei1,Kong Baohua1ORCID,Liu Qian1ORCID,Xia Xiufang1,Liu Haotian1

Affiliation:

1. College of Food Science, Northeast Agricultural University, Harbin 150030, China

Abstract

The use of the appropriate emulsifier is essential for forming a stable nanoemulsion delivery system that can maintain the sustained release of its contents. Health concerns have prompted the search for natural biopolymers to replace traditional synthetic substances as emulsifiers. In this study, an oregano essential oil (OEO) nanoemulsion-embedding system was created using soybean protein isolate (SPI), tea saponin (TS), and soy lecithin (SL) as natural emulsifiers and then compared to a system created using a synthetic emulsifier (Tween 80). The results showed that 4% Tween 80, 1% SPI, 2% TS, and 4% SL were the optimal conditions. Subsequently, the influence of emulsifier type on nanoemulsion stability was evaluated. The results revealed that among all the nanoemulsions, the TS nanoemulsion exhibited excellent centrifugal stability, storage stability, and oxidative stability and maintained high stability and encapsulation efficiency, even under relatively extreme environmental conditions. The good stability of the TS nanoemulsion may be due to the strong electrostatic repulsion generated by TS molecules, which contain hydroxyl groups, sapogenins, and saccharides in their structures. Overall, the natural emulsifiers used in our study can form homogeneous nanoemulsions, but their effectiveness and stability differ considerably.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3