Characterization of Polyphenol and Volatile Fractions of Californian-Style Black Olives and Innovative Application of E-nose for Acrylamide Determination

Author:

Martín-Tornero ElísabetORCID,Sánchez Ramiro,Lozano JesúsORCID,Martínez Manuel,Arroyo PatriciaORCID,Martín-Vertedor DanielORCID

Abstract

Californian-style black olives require a sterilization treatment that produces a carcinogenic contaminant, acrylamide. Thus, this compound was evaluated in two different olive cultivars using an electronic nose (E-nose). The sterilization intensity had a significant influence on the final phenol concentrations, acrylamide content, and volatile compounds. Increasing the sterilization intensity from 10 to 26 min (F0) reduced the phenol content, but it promoted acrylamide synthesis, leading to a wide range of this toxic substance. The Ester and phenol groups of volatile compounds decreased their content when the sterilization treatment increased; however, aldehyde and other volatile compound groups significantly increased their contents according to the thermal treatments. The compounds 4-ethenyl-pyridine, benzaldehyde, and 2,4-dimethyl-hexane are volatile compounds with unpleasant odours and demonstrated a high amount of influence on the differences found after the application of the thermal treatments. The “Manzanilla Cacereña” variety presented the highest amount of phenolic compounds and the lowest acrylamide content. Finally, it was found that acrylamide content is correlated with volatile compounds, which was determined using multiple linear regression analysis (R2 = 0.9994). Furthermore, the aroma of table olives was analysed using an E-nose, and these results combined with Partial Least Square (PLS) were shown to be an accurate method (range to error ratio (RER) >10 and ratio of performance to deviation (RPD) >2.5) for the indirect quantification of this toxic substance.

Funder

European Regional Development Fund

Junta de Extremadura

Research group

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3