Application of an Electronic Nose Technology for the Prediction of Chemical Process Contaminants in Roasted Almonds

Author:

Mesías Marta1ORCID,Barea-Ramos Juan Diego2,Lozano Jesús3ORCID,Morales Francisco J.1ORCID,Martín-Vertedor Daniel2

Affiliation:

1. Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 6, 28040 Madrid, Spain

2. Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain

3. Industrial Engineering School, University of Extremadura, 06006 Badajoz, Spain

Abstract

The purpose of this study was to investigate the use of an experimental electronic nose (E-nose) as a predictive tool for detecting the formation of chemical process contaminants in roasted almonds. Whole and ground almonds were subjected to different thermal treatments, and the levels of acrylamide, hydroxymethylfurfural (HMF) and furfural were analysed. Subsequently, the aromas were detected by using the electronic device. Roasted almonds were classified as positive or negative sensory attributes by a tasting panel. Positive aromas were related to the intensity of the almond odour and the roasted aroma, whereas negative ones were linked to a burnt smell resulting from high-intensity thermal treatments. The electronic signals obtained by the E-nose were correlated with the content of acrylamide, HMF, and furfural (RCV2 > 0.83; RP2 > 0.76 in whole roasted almonds; RCV2  > 0.88; RP 2 > 0.95 in ground roasted almonds). This suggest that the E-nose can predict the presence of these contaminants in roasted almonds. In conclusion, the E-nose may be a useful device to evaluate the quality of roasted foods based on their sensory characteristics but also their safety in terms of the content of harmful compounds, making it a useful predictive chemometric tool for assessing the formation of contaminants during almond processing.

Funder

Community of Madrid and European

FEDER

Junta de Extremadura

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3