Optimal Design and Sizing of Hybrid Photovoltaic/Fuel Cell Electrical Power System

Author:

Ghoniem Rania M.1,Alahmer Ali23ORCID,Rezk Hegazy4ORCID,As’ad Samer5ORCID

Affiliation:

1. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia

2. Department of Mechanical Engineering, Tuskegee University, Tuskegee, AL 36088, USA

3. Department of Mechanical Engineering, Faculty of Engineering, Tafila Technical University, Tafila 66110, Jordan

4. Department of Electrical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

5. Renewable Energy Engineering Department, Faculty of Engineering, Middle East University, Amman 11831, Jordan

Abstract

Renewable energy solutions play a crucial role in addressing the growing energy demands while mitigating environmental concerns. This study examines the techno-economic viability and sensitivity of utilizing solar photovoltaic/polymer electrolyte membrane (PEM) fuel cells (FCs) to meet specific power demands in NEOM, Saudi Arabia. The novelty of this study lies in its innovative approach to analyzing and optimizing PV/PEMFC systems, aiming to highlight their economic feasibility and promote sustainable development in the region. The analysis focuses on determining the optimal size of the PV/PEMFC system based on two critical criteria: minimum cost of energy (COE) and minimum net present cost (NPC). The study considers PEMFCs with power ratings of 30 kW, 40 kW, and 50 kW, along with four PV panel options: Jinko Solar, Powerwave, Tindo Karra, and Trina Solar. The outcomes show that the 30 kW PEMFC and the 201 kW Trina Solar TSM-430NEG9R.28 are the most favorable choices for the case study. Under these optimal conditions, the study reveals the lowest values for NPC at USD 703,194 and COE at USD 0.498 per kilowatt-hour. The levelized cost of hydrogen falls within the range of USD 15.9 to 23.4 per kilogram. Furthermore, replacing the 30 kW Trina solar panel with a 50 kW Tindo PV module results in a cost reduction of 32%. The findings emphasize the criticality of choosing optimal system configurations to attain favorable economic outcomes, thereby facilitating the adoption and utilization of renewable energy sources in the region. In conclusion, this study stands out for its pioneering and thorough analysis and optimization of PV/PEMFC systems, providing valuable insights for sustainable energy planning in NEOM, Saudi Arabia.

Funder

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3