Integrative analysis of diverse hybrid power systems for sustainable energy in underdeveloped regions: A case study in Indonesia

Author:

Adam Kharisma Bani,Raharjo Jangkung,Silalahi Desri Kristina,Aprilia Bandiyah Sri,IGPO Indra Wijaya

Abstract

<abstract> <p>There is a goal for practical renewable electrification and renewable energy investments in underdeveloped regions. Indonesia's experience underscores the complexities and challenges in implementing such projects effectively. A study on the effects of various socio-economic factors on Carbon dioxide (CO<sub>2</sub>) emissions in Indonesia highlights the significant impact of forest area, urbanization, and industrialization on carbon emissions. A hybrid system consists of PV, a Biogas Generator, and a Wind Turbine that are successfully deployed. However, no economic analysis has been conducted to obtain the best configuration of the hybrid system. We propose to delve into the effective integration combination of hybrid power systems. In this study, we thoroughly analyzed hybrid power systems in underdeveloped areas using the HOMER software. We examined five different hybrid system configurations: Solely biogas, complete generator integration, a biogas and hydrogen combo, biogas coupled with a PV system, and biogas combined with a wind turbine. Our findings indicated varying levels of economic viability, operational performance, and environmental impact across the configurations, providing crucial insights for policymakers and stakeholders in underdeveloped regions like Indonesia. The results showed the Wind-Hydrogen and Hydrogen Only schemes as the most cost-effective, with a Total Net Present Cost (NPC) of, 969.27 and Levelized Cost of Energy (LCOE) at zhongwenzy.218. Moreover, while CO<sub>2</sub> emissions were similar across all schemes, around 27,744 kg/year, the All-Generator scheme had slightly higher emissions at 27,667 kg/year but led in electricity production with 29,101 kWh/year. These results underscore the importance of balancing cost, energy output, and environmental impact in hybrid power system schemes for underdeveloped regions.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3