Photovoltaic/Hydrokinetic/Hydrogen Energy System Sizing Considering Uncertainty: A Stochastic Approach Using Two-Point Estimate Method and Improved Gradient-Based Optimizer

Author:

Kamal Mustafa1ORCID,Pecho Renzon Daniel Cosme2,Fakhruldeen Hassan Falah34ORCID,Sharif Hailer5,Mrzljak Vedran6ORCID,Nowdeh Saber Arabi7,Poljak Igor8ORCID

Affiliation:

1. Department of Basic Sciences, College of Science and Theoretical Studies, Saudi Electronic University, Dammam 32256, Saudi Arabia

2. Salutem Diagnostic Imaging Center, Lima 15498, Peru

3. Computer Techniques Engineering Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad 10011, Iraq

4. Computer Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf 54001, Iraq

5. Medical Technical College, Al-Farahidi University, Baghdad 10001, Iraq

6. Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia

7. Power and Energy Group, Institute of Research Sciences, Johor Bahru 81310, Malaysia

8. Department of Maritime Sciences, University of Zadar, Mihovila Pavlinovića 1, 23000 Zadar, Croatia

Abstract

In this paper, stochastic sizing of a stand-alone Photovoltaic/Hydrokinetic/Hydrogen storage energy system is performed with aim of minimizing the cost of project life span (COPL) and satisfying the reliability index as probability of load shortage (POLS). The stochastic sizing is implemented using a novel framework considering two-point estimate method (2m+1 PEM) and improved gradient-based optimizer (IGBO). The 2m+1 PEM is used to evaluate the impact of uncertainties of energy resource generation and system demand on sizing problem. The 2m+1 PEM utilizes the approximate method to account for these uncertainties. In order to avoid premature convergence, the gradient-based optimizer (GBO), a meta-heuristic algorithm influenced by Newtonian concepts, is enhanced using a dynamic lens-imaging learning approach. The size of the system devices, which is determined utilizing the IGBO with the COPL minimization and optimally satisfying the POLS, is one of the optimization variables. The results of three hPV/HKT/FC, hPV/FC, and hHKT/FC configurations of the system are presented in two situations of deterministic and stochastic sizing without and with taking uncertainty into consideration. The findings showed that the hPV/HKT/FC configuration and the IGBO performed better than other configurations and techniques like conventional GBO, particle swarm optimization (PSO), and artificial electric field algorithm (AEFA) to achieve the lowest COPL and POLS (higher reliability) in various cases. Additionally, the COPL for the hPV/HKT/FC, hPV/FC, and hHKT/FC configurations increased by 7.63%, 7.57%, and 7.65%, respectively, while the POLS fell by 5.01%, 4.48%, and 4.59%, respectively, contrasted to the deterministic sizing, according to the results of stochastic sizing based on 2m+1 PEM. As a result, the findings indicate that in the deterministic sizing model, the quantity of output and energy storage is insufficient to meet demand under unknown circumstances. Applying stochastic sizing while taking into account the volatility of both supply and demand can, therefore, be an economically sound way to meet demand.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3