Method of Biomass Discrimination for Fast Assessment of Calorific Value

Author:

Gocławski JarosławORCID,Korzeniewska EwaORCID,Sekulska-Nalewajko JoannaORCID,Kiełbasa PawełORCID,Dróżdż TomaszORCID

Abstract

Crop byproducts are alternatives to nonrenewable energy resources. Burning biomass results in lower emission of undesirable nitrogen and sulfur oxides and contributes no significant greenhouse effect. There is a diverse range of energy-useful biomass, including in terms of calorific value. This article presents a new method of discriminating biomass, and of determining its calorific value. The method involves extracting the selected texture features on the surface of a briquette from a microscopic image and then classifying them using supervised classification methods. The fractal dimension, local binary pattern (LBP), and Haralick features are computed and then classified by linear discrimination analysis (LDA). The discrimination results are compared with the results obtained by random forest (RF) and deep neural network (DNN) type classifiers. This approach is superior in terms of complexity and operating time to other methods such as, for instance, the calorimetric method or analysis of the chemical composition of elements in a sample. In the normal operation mode, our method identifies the calorific value in the time of about 100 s, i.e., 90 times faster than traditional combustion of material samples. In predicting from a single sample image, the overall average accuracy of 95% was achieved for all tested classifiers. The authors’ idea to use ten input images of the same material and then majority voting after classification increases the discrimination system accuracy above 99%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3