Algorithms for Optimizing Energy Consumption for Fermentation Processes in Biogas Production

Author:

Rybak Grzegorz1ORCID,Kozłowski Edward2ORCID,Król Krzysztof13ORCID,Rymarczyk Tomasz13ORCID,Sulimierska Agnieszka2,Dmowski Artur3ORCID,Bednarczuk Piotr3ORCID

Affiliation:

1. Netrix S.A., Research and Development Center, Związkowa 26, 20-148 Lublin, Poland

2. Faculty of Management, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland

3. Faculty of Transport and Computer Science, WSEI University, Projektowa 4, 20-209 Lublin, Poland

Abstract

Problems related to reducing energy consumption constitute an important basis for scientific research worldwide. A proposal to use various renewable energy sources, including creating a biogas plant, is emphasized in the introduction of this article. However, the indicated solutions require continuous monitoring and control to maximise the installations’ effectiveness. The authors took up the challenge of developing a computer solution to reduce the costs of maintaining technological process monitoring systems. Concept diagrams of a metrological system using multi-sensor techniques containing humidity, temperature and pressure sensors coupled with Electrical Impedance Tomography (EIT) sensors were presented. This approach allows for effective monitoring of the anaerobic fermentation process. The possibility of reducing the energy consumed during installation operation was proposed, which resulted in the development of algorithms for determining alarm states, which are the basis for controlling the frequency of technological process measurements. Implementing the idea required the preparation of measurement infrastructure and an analytical engine based on AI techniques, including an expert system and developed algorithms. Numerous time-consuming studies and experiments have confirmed reduced energy consumption, which can be successfully used in biogas production.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3