Towards an Improved High-Throughput Phenotyping Approach: Utilizing MLRA and Dimensionality Reduction Techniques for Transferring Hyperspectral Proximal-Based Model to Airborne Images

Author:

Heidarian Dehkordi Ramin1ORCID,Candiani Gabriele1ORCID,Nutini Francesco1ORCID,Carotenuto Federico2ORCID,Gioli Beniamino3ORCID,Cesaraccio Carla4ORCID,Boschetti Mirco1ORCID

Affiliation:

1. Institute for Electromagnetic Sensing of the Environment, National Research Council, 20133 Milan, Italy

2. Institute of BioEconomy, National Research Council, 40129 Bologna, Italy

3. Institute of BioEconomy, National Research Council, 50145 Florence, Italy

4. Institute of BioEconomy, National Research Council, 07100 Sassari, Italy

Abstract

At present, it is critical to accurately monitor wheat crops to help decision-making processes in precision agriculture. This research aims to retrieve various wheat crop traits from hyperspectral data using machine learning regression algorithms (MLRAs) and dimensionality reduction (DR) techniques. This experiment was conducted in an agricultural field in Arborea, Oristano-Sardinia, Italy, with different factors such as cultivars, N-treatments, and soil ploughing conditions. Hyperspectral data were acquired on the ground using a full-range Spectral Evolution spectrometer (350–2500 nm). Four DR techniques, including (i) variable influence on projection (VIP), (ii) principal component analysis (PCA), (iii) vegetation indices (VIs), and (iv) spectroscopic feature (SF) calculation, were undertaken to reduce the dimension of the hyperspectral data while maintaining the information content. We used five MLRA models, including (i) partial least squares regression (PLSR), (ii) random forest (RF), (iii) support vector regression (SVR), (iv) Gaussian process regression (GPR), and (v) neural network (NN), to retrieve wheat traits at either leaf and canopy levels. The studied traits were leaf area index (LAI), leaf and canopy water content (LWC and CWC), leaf and canopy chlorophyll content (LCC and CCC), and leaf and canopy nitrogen content (LNC and CNC). MLRA models were able to accurately retrieve wheat traits at the canopy level with PLSR and NN indicating the highest modelling performance. On the contrary, MLRA models indicated less accurate retrievals of the leaf-level traits. DR techniques were found to notably improve the retrieval accuracy of crop traits. Furthermore, the generated models were re-calibrated using soil spectra and then transferred to an airborne dataset collected using a CASI-SASI hyperspectral sensor, allowing the estimation of wheat traits across the entire field. The predicted crop trait maps illustrated consistent patterns while also preserving the real-field characteristics well. Lastly, a statistical paired t-test was undertaken to conduct a proof of concept of wheat phenotyping analysis considering the different agricultural variables across the study site. N-treatment caused significant differences in wheat crop traits in many instances, whereas the observed differences were less pronounced between the cultivars. No particular impact of soil ploughing conditions on wheat crop characteristics was found. Using such combinations of MLRA and DR techniques based on hyperspectral data can help to effectively monitor crop traits throughout the cropping seasons and can also be readily applied to other agricultural settings to help both precision farming applications and the implementation of high-throughput phenotyping solutions.

Funder

National Research Council

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3