Monitoring Wheat Leaf Rust and Stripe Rust in Winter Wheat Using High-Resolution UAV-Based Red-Green-Blue Imagery

Author:

Heidarian Dehkordi RaminORCID,El Jarroudi MoussaORCID,Kouadio LouisORCID,Meersmans JeroenORCID,Beyer Marco

Abstract

During the past decade, imagery data acquired from unmanned aerial vehicles (UAVs), thanks to their high spatial, spectral, and temporal resolutions, have attracted increasing attention for discriminating healthy from diseased plants and monitoring the progress of such plant diseases in fields. Despite the well-documented usage of UAV-based hyperspectral remote sensing for discriminating healthy and diseased plant areas, employing red-green-blue (RGB) imagery for a similar purpose has yet to be fully investigated. This study aims at evaluating UAV-based RGB imagery to discriminate healthy plants from those infected by stripe and wheat leaf rusts in winter wheat (Triticum aestivum L.), with a focus on implementing an expert system to assist growers in improved disease management. RGB images were acquired at four representative wheat-producing sites in the Grand Duchy of Luxembourg. Diseased leaf areas were determined based on the digital numbers (DNs) of green and red spectral bands for wheat stripe rust (WSR), and the combination of DNs of green, red, and blue spectral bands for wheat leaf rust (WLR). WSR and WLR caused alterations in the typical reflectance spectra of wheat plants between the green and red spectral channels. Overall, good agreements between UAV-based estimates and observations were found for canopy cover, WSR, and WLR severities, with statistically significant correlations (p-value (Kendall) < 0.0001). Correlation coefficients were 0.92, 0.96, and 0.86 for WSR severity, WLR severity, and canopy cover, respectively. While the estimation of canopy cover was most often less accurate (correlation coefficients < 0.20), WSR and WLR infected leaf areas were identified satisfactorily using the RGB imagery-derived indices during the critical period (i.e., stem elongation and booting stages) for efficacious fungicide application, while disease severities were also quantified accurately over the same period. Using such a UAV-based RGB imagery method for monitoring fungal foliar diseases throughout the cropping season can help to identify any new disease outbreak and efficaciously control its spread.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3