Long-Term SAR Data Analysis for Subsidence Monitoring and Correlation Study at Beijing Capital Airport

Author:

Zheng Yueze12ORCID,Peng Junhuan1,Li Chuyu2,Chen Xue3ORCID,Peng Yun4,Ma Xu1,Huang Meng2

Affiliation:

1. School of Land Science and Technology, China University of Geosciences, 29 Xueyuan Lu, Beijing 100083, China

2. Beijing Institute of Surveying and Mapping, 15 Yangfangdian Lu, Beijing 100080, China

3. National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China

4. Power China Zhongnan Engineering Corporation Limited, 16 Xiangzhang East Road, Changsha 410014, China

Abstract

Land subsidence, resulting from natural or human activities, is a global environmental geological disaster. The Interferometric Synthetic Aperture Radar (InSAR) time-series analysis technique offers high spatial and continuous temporal resolution, providing data and a foundation for investigating regional land subsidence and its evolution mechanism. Beijing Capital International Airport (BCIA) has experienced uneven land subsidence since 1935, together with severe fissures significantly affecting its normal operations. In this study, the time-series InSAR method was successfully applied to monitor the gradual increase in uneven local subsidence and ground fissures activity at BCIA from June 2003 to March 2023. Initially, ENVISAT-ASAR, Cosmo-SkyMed, and Sentinel-1 data were processed by time-series InSAR techniques to generate deformation rate maps and time series for the airport area. Subsequently, a comparison was made between the displacement time series from InSAR and ground leveling measurements to assess the accuracy of InSAR-derived measurements. Through a comprehensive analysis of the distribution characteristics of land subsidence at the airport, a long-standing ground fault was located within the airport was identified. A preliminary discussion on the development status of this ground fissure was carried out based on the visual interpretation of optical images. Lastly, the inducing factors and evolutionary conditions of land subsidence were discussed. This case demonstrates the applicability of InSAR technology in identifying and monitoring geological processes such as land subsidence and ground fissure activities. It provides a scientific approach to exploring and studying the causes and formation mechanisms of land subsidence and ground fissures in the Beijing Capital Airport area.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3