Nonlinear Evolutionary Pattern Recognition of Land Subsidence in the Beijing Plain

Author:

Lyu Mingyuan123ORCID,Li Xiaojuan45,Ke Yinghai45,Jiang Jiyi123,Sun Zhenjun123,Zhu Lin45,Guo Lin45ORCID,Xu Zhihe123,Tang Panke123,Gong Huili45,Wang Lan45

Affiliation:

1. School of Earth Sciences, Institute of Disaster Prevention, Langfang 065201, China

2. Hebei Key Laboratory of Earthquake Dynamics, Langfang 065201, China

3. Langfang Key Laboratory of Earth Exploration and Information Technology, Langfang 065201, China

4. College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China

5. Laboratory Cultivation Base of Environment Process and Digital Simulation, Beijing 100048, China

Abstract

Beijing is a city on the North China Plain with severe land subsidence. In recent years, Beijing has implemented effective measures to control land subsidence. Since this implementation, the development of time-series land subsidence in Beijing has slowed and has shown nonlinearity. Most previous studies have focused on the linear evolution of land subsidence; the nonlinear evolutionary patterns of land subsidence require further discussion. Therefore, we aimed to identify the evolution of land subsidence in Beijing, based on Envisat ASAR and Radarsat-2 images from 2003 to 2020, using permanent scatterer interferometric synthetic aperture radar (PS-InSAR) and cubic curve polynomial fitting methods. The dates of the extreme and inflection points were identified from the polynomial coefficients. From 2003 to 2020, the subsidence rate reached 138.55 mm/year, and the area with a subsidence rate > 15 mm/year reached 1688.81 km2. The cubic polynomials fit the time-series deformation well, with R2 ranging from 0.86 to 0.99 and the RMSE ranging from 1.97 to 60.28 mm. Furthermore, the subsidence rate at 96.64% of permanent scatterer (PS) points first increased and then decreased. The subsidence rate at 86.58% of the PS points began to decrease from 2010 to 2015; whereas the subsidence rate at 30.51% of the PS point reached a maximum between 2015 and 2019 and then decreased. The cumulative settlement continued to increase at 69.49% of the PS points. These findings imply that groundwater levels are highly correlated with the temporal evolution of subsidence in areas with pattern D (Vs+-, S+), with increasing and then decelerating rates and increasing amounts. In regions with a thickness of compressible clay layer over 210 m, subsidence follows pattern E (Vs+, S+), with increasing rates and amounts. Fractures such as the Gaoliying and Sunhe fractures significantly influence the spatial distribution of subsidence patterns, showing distinct differences on either side. Near the Global Resort Station, pattern E (Vs+, S+) intensifies in subsidence, potentially due to factors like land use changes and construction activities.

Funder

Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

University-Industry Collaborative Education Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3