Collaborative Robotic Wire + Arc Additive Manufacture and Sensor-Enabled In-Process Ultrasonic Non-Destructive Evaluation

Author:

Zimermann Rastislav,Mohseni EhsanORCID,Vasilev Momchil,Loukas CharalamposORCID,Vithanage Randika K. W.ORCID,Macleod Charles N.,Lines DavidORCID,Javadi YasharORCID,Espirindio E Silva Misael Pimentel,Fitzpatrick Stephen,Halavage Steven,Mckegney Scott,Pierce Stephen Gareth,Williams Stewart,Ding Jialuo

Abstract

The demand for cost-efficient manufacturing of complex metal components has driven research for metal Additive Manufacturing (AM) such as Wire + Arc Additive Manufacturing (WAAM). WAAM enables automated, time- and material-efficient manufacturing of metal parts. To strengthen these benefits, the demand for robotically deployed in-process Non-Destructive Evaluation (NDE) has risen, aiming to replace current manually deployed inspection techniques after completion of the part. This work presents a synchronized multi-robot WAAM and NDE cell aiming to achieve (1) defect detection in-process, (2) enable possible in-process repair and (3) prevent costly scrappage or rework of completed defective builds. The deployment of the NDE during a deposition process is achieved through real-time position control of robots based on sensor input. A novel high-temperature capable, dry-coupled phased array ultrasound transducer (PAUT) roller-probe device is used for the NDE inspection. The dry-coupled sensor is tailored for coupling with an as-built high-temperature WAAM surface at an applied force and speed. The demonstration of the novel ultrasound in-process defect detection approach, presented in this paper, was performed on a titanium WAAM straight sample containing an intentionally embedded tungsten tube reflectors with an internal diameter of 1.0 mm. The ultrasound data were acquired after a pre-specified layer, in-process, employing the Full Matrix Capture (FMC) technique for subsequent post-processing using the adaptive Total Focusing Method (TFM) imaging algorithm assisted by a surface reconstruction algorithm based on the Synthetic Aperture Focusing Technique (SAFT). The presented results show a sufficient signal-to-noise ratio. Therefore, a potential for early defect detection is achieved, directly strengthening the benefits of the AM process by enabling a possible in-process repair.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3