eWaSR—An Embedded-Compute-Ready Maritime Obstacle Detection Network

Author:

Teršek Matija12ORCID,Žust Lojze2ORCID,Kristan Matej2ORCID

Affiliation:

1. Luxonis Holding Corporation, Littleton, CO 80127, USA

2. Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia

Abstract

Maritime obstacle detection is critical for safe navigation of autonomous surface vehicles (ASVs). While the accuracy of image-based detection methods has advanced substantially, their computational and memory requirements prohibit deployment on embedded devices. In this paper, we analyze the current best-performing maritime obstacle detection network, WaSR. Based on the analysis, we then propose replacements for the most computationally intensive stages and propose its embedded-compute-ready variant, eWaSR. In particular, the new design follows the most recent advancements of transformer-based lightweight networks. eWaSR achieves comparable detection results to state-of-the-art WaSR with only a 0.52% F1 score performance drop and outperforms other state-of-the-art embedded-ready architectures by over 9.74% in F1 score. On a standard GPU, eWaSR runs 10× faster than the original WaSR (115 FPS vs. 11 FPS). Tests on a real embedded sensor OAK-D show that, while WaSR cannot run due to memory restrictions, eWaSR runs comfortably at 5.5 FPS. This makes eWaSR the first practical embedded-compute-ready maritime obstacle detection network. The source code and trained eWaSR models are publicly available.

Funder

Slovenian Research Agency

Luxonis Holding Corporation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A lightweight dual-branch semantic segmentation network for enhanced obstacle detection in ship navigation;Engineering Applications of Artificial Intelligence;2024-10

2. LDMNet: Enhancing the Segmentation Capabilities of Unmanned Surface Vehicles in Complex Waterway Scenarios;Applied Sciences;2024-08-31

3. Panoptic Water Surface Visual Perception for USVs Using Monocular Camera Sensor;IEEE Sensors Journal;2024-08-01

4. A cross-level semantic aggregation segmentation method in aquatic scenes;MIPPR 2023: Pattern Recognition and Computer Vision;2024-03-07

5. 2nd Workshop on Maritime Computer Vision (MaCVi) 2024: Challenge Results;2024 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW);2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3