LDMNet: Enhancing the Segmentation Capabilities of Unmanned Surface Vehicles in Complex Waterway Scenarios

Author:

Dai Tongyang1,Xiang Huiyu1ORCID,Leng Chongjie1,Huang Song1,He Guanghui1,Han Shishuo1

Affiliation:

1. School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China

Abstract

Semantic segmentation-based Complex Waterway Scene Understanding has shown great promise in the environmental perception of Unmanned Surface Vehicles. Existing methods struggle with estimating the edges of obstacles under conditions of blurred water surfaces. To address this, we propose the Lightweight Dual-branch Mamba Network (LDMNet), which includes a CNN-based Deep Dual-branch Network for extracting image features and a Mamba-based fusion module for aggregating and integrating global information. Specifically, we improve the Deep Dual-branch Network structure by incorporating multiple Atrous branches for local fusion; we design a Convolution-based Recombine Attention Module, which serves as the gate activation condition for Mamba-2 to enhance feature interaction and global information fusion from both spatial and channel dimensions. Moreover, to tackle the directional sensitivity of image serialization and the impact of the State Space Model’s forgetting strategy on non-causal data modeling, we introduce a Hilbert curve scanning mechanism to achieve multi-scale feature serialization. By stacking feature sequences, we alleviate the local bias of Mamba-2 towards image sequence data. LDMNet integrates the Deep Dual-branch Network, Recombine Attention, and Mamba-2 blocks, effectively capturing the long-range dependencies and multi-scale global context information of Complex Waterway Scene images. The experimental results on four benchmarks show that the proposed LDMNet significantly improves obstacle edge segmentation performance and outperforms existing methods across various performance metrics.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3