Limitations of Structural Insight into Ultrafast Melting of Solid Materials with X-ray Diffraction Imaging

Author:

Tkachenko VictorORCID,Abdullah Malik M.ORCID,Jurek Zoltan,Medvedev NikitaORCID,Lipp VladimirORCID,Makita Mikako,Ziaja BeataORCID

Abstract

In this work, we analyze the application of X-ray diffraction imaging techniques to follow ultrafast structural transitions in solid materials using the example of an X-ray pump–X-ray probe experiment with a single-crystal silicon performed at a Linac Coherent Light Source. Due to the spatially non-uniform profile of the X-ray beam, the diffractive signal recorded in this experiment included contributions from crystal parts experiencing different fluences from the peak fluence down to zero. With our theoretical model, we could identify specific processes contributing to the silicon melting in those crystal regions, i.e., the non-thermal and thermal melting whose occurrences depended on the locally absorbed X-ray doses. We then constructed the total volume-integrated signal by summing up the coherent signal contributions (amplitudes) from the various crystal regions and found that this significantly differed from the signals obtained for a few selected uniform fluence values, including the peak fluence. This shows that the diffraction imaging signal obtained for a structurally damaged material after an impact of a non-uniform X-ray pump pulse cannot be always interpreted as the material’s response to a pulse of a specific (e.g., peak) fluence as it is sometimes believed. This observation has to be taken into account in planning and interpreting future experiments investigating structural changes in materials with X-ray diffraction imaging.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3