Author:
Mirza Inam,Bulgakov Alexander V.,Sopha Hanna,Starinskiy Sergey V.,Turčičová Hana,Novák Ondřej,Mužík Jiří,Smrž Martin,Volodin Vladimir A.,Mocek Tomáš,Macak Jan M.,Bulgakova Nadezhda M.
Abstract
As-prepared nanostructured semiconductor materials are usually found in an amorphous form, which needs to be converted into a crystalline one for improving electronic properties and achieving enhanced application functionalities. The most utilized method is thermal annealing in a furnace, which however is time- and energy-consuming and not applicable for low-temperature melting substrates. An alternative is laser annealing, which can be carried out in a relatively short time and, additionally, offers the possibility of annealing localized areas. However, laser-annealed nanostructures are often distorted by melting, while preserving the as-prepared morphology is essential for practical applications. In this work, we analyze conditions of non-thermal ultrafast laser annealing of two kinds of nanostructures: anodic TiO2 nanotube layers and Ge/Si multilayer stacks. For both cases, regimes of crystallization have been found, which yield in preserving the initial nanomaterial morphologies without any melting signs. On these examples, ultrafast non-thermal mechanisms of structural material transformation are discussed, which can provide new opportunities for conversion of amorphous semiconductor nanomaterials into a desired crystalline form that is of high demand for existing and emerging technologies.
Subject
Electrical and Electronic Engineering,Computer Science Applications,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献