Development and Experimental Validation of an Adaptive, Piston-Damage-Based Combustion Control System for SI Engines: Part 2—Implementation of Adaptive Strategies

Author:

Brusa Alessandro,Cavina NicolòORCID,Rojo Nahuel,Mecagni Jacopo,Corti Enrico,Moro Davide,Cucchi Matteo,Silvestri Nicola

Abstract

This work focuses on the implementation of innovative adaptive strategies and a closed-loop chain in a piston-damage-based combustion controller. In the previous paper (Part 1), implemented models and the open loop algorithm are described and validated by reproducing some vehicle maneuvers at the engine test cell. Such controller is further improved by implementing self-learning algorithms based on the analytical formulations of knock and the combustion model, to update the fuel Research Octane Number (RON) and the relationship between the combustion phase and the spark timing in real-time. These strategies are based on the availability of an on-board indicating system for the estimation of both the knock intensity and the combustion phase index. The equations used to develop the adaptive strategies are described in detail. A closed-loop chain is then added, and the complete controller is finally implemented in a Rapid Control Prototyping (RCP) device. The controller is validated with specific tests defined to verify the robustness and the accuracy of the adaptive strategies. Results of the online validation process are presented in the last part of the paper and the accuracy of the complete controller is finally demonstrated. Indeed, error between the cyclic and the target combustion phase index is within the range ±0.5 Crank Angle degrees (°CA), while the error between the measured and the calculated maximum in-cylinder pressure is included in the range ±5 bar, even when fuel RON or spark advance map is changing.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3