Advanced, Guided Procedure for the Calibration and Generalization of Neural Network-Based Models of Combustion and Knock Indexes

Author:

Brusa Alessandro1,Shethia Fenil Panalal2,Mecagni Jacopo1,Cavina Nicolò1

Affiliation:

1. Alma Mater Studiorum University of Bologna, Italy

2. Alma Mater Studiorum University of Bologna, Industrial Engineering, Italy

Abstract

<div>In the last few years, the artificial neural networks have been widely used in the field of engine modeling. Some of the main reasons for this are, their compatibility with the real-time systems, higher accuracy, and flexibility if compared to other data-driven approaches. One of the main difficulties of using this approach is the calibration of the network itself. It is very difficult to find in the literature procedures that guide the user to completely define a network. Typically, the very last steps (like the choice of the number of neurons) must be selected by the user on the base of his sensitivity to the problem.</div> <div>This work proposes an automatic calibration procedure for the artificial neural networks, considering all the main hyper-parameters of the network such as the training algorithms, the activation functions, the number of the neurons, the number of epochs, and the number of hidden layers, for modeling various combustion indexes in a modern internal combustion engine. However, the proposed procedure can be applied to the training of any neural network-based model.</div> <div>The automatic calibration procedure outputs a configuration of the network, giving the optimal combination in terms of hyper-parameters. The decision of the optimal configuration of the neural network is based on a self-developed formula, which gives a rank of all the possible hyper-parameter combinations using some statistical parameters obtained comparing the simulated and the experimental values. In the end, the lowest rank is selected as the optimal one as it represents the combination having the lowest error. Following the definition of this rank, high accuracy on the results has been achieved in terms of the root mean square error index, for example, on the combustion phase model, the error is 0.139°CA under steady-state conditions. On the maximum in-cylinder pressure model, the error is 1.682 bar, while the knock model has an error of 0.457 bar for the same test that covers the whole engine operating field.</div>

Publisher

SAE International

Subject

Fuel Technology,Automotive Engineering,General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3