AI-Based Virtual Sensing of Gaseous Pollutant Emissions at the Tailpipe of a High-Performance Vehicle

Author:

Giovannardi Emanuele1,Brusa Alessandro1,Petrone Boris1,Cavina Nicolò1,Tonelli Roberto2,Kitsopanidis Ioannis2

Affiliation:

1. University of Bologna, Italy

2. Ferrari, Italy

Abstract

<div>This scientific publication presents the application of artificial intelligence (AI) techniques as a virtual sensor for tailpipe emissions of CO, NOx, and HC in a high-performance vehicle. The study aims to address critical challenges faced in real industrial applications, including signal alignment and signal dynamics management. A comprehensive pre-processing pipeline is proposed to tackle these issues, and a light gradient-boosting machine (LightGBM) model is employed to estimate emissions during real driving cycles. The research compares two modeling approaches: one involving a unique “direct model” and another using a “two-stage model” which leverages distinct models for the engine and the aftertreatment. The findings suggest that the direct model strikes the best balance between simplicity and accuracy. Furthermore, the study investigates two sensor setups: a standard configuration and an optimized one, which incorporates an additional lambda probe in the exhaust line after the main catalyst. The results indicate a significant enhancement in performance for NOx and CO estimations with the introduction of the third lambda probe, while HC results remain relatively unchanged. Additionally, the AI model is tested on two different electronic control unit (ECU) software calibrations, yielding excellent results in both cases. This suggests that machine learning models are robust to control software variation and can be used to optimize software calibrations in a virtual environment, reducing the reliance on extensive experimental testing. Moreover, the AI model’s performance demonstrates compatibility with real-time implementation. In conclusion, this work establishes the viability and efficiency of AI techniques in accurately estimating tailpipe emissions from an engine in an industrial context. The study showcases the potential for AI to contribute to emission estimation and optimization processes, offering a promising pathway for an innovative industrial practice.</div>

Publisher

SAE International

Subject

Fuel Technology,Automotive Engineering,General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3