Effect of Operating Conditions on the Performance of Gas–Liquid Mixture Roots Pumps

Author:

Guo QingORCID,Luo Kai,Li Daijin,Huang ChuangORCID,Qin Kan

Abstract

The performance of the gas–liquid mixture Roots pump at different operating conditions is investigated in this paper. The pump efficiency was first increased from 48% to 64%, and then decreased to 59% with the increased inlet CO2 volume fraction (from 0.8 to 1). The increased rotational speed (from 1000 rpm to 4000 rpm) and pressure ratio (from 2 to 10) can lead to a reduction in the pump’s efficiency from 67% to 43% and from 48% to 33%, respectively. The variation in the pump’s efficiency is affected by the volumetric efficiency and the flow efficiency simultaneously. The high pressure and the CO2 volume fraction in the outlet zone can increase the leakage, leading to a reduction in the volumetric efficiency. The flow efficiency decreases with the increase in the local pressure at the outlet zone and the backflow density. The outlet zone pressure can also affect the fluid properties by changing the density of the gas phase. Therefore, the combined effect of the outlet zone pressure and the working fluid properties is considered to be the main factor affecting the performance. This paper further explores the suitability of Roots pumps for compressing gas–liquid mixtures.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3