Experimental Investigation and Numerical Validation of a Roots Pump’s Performance Operating with Gas-Liquid Mixtures

Author:

Qin Kan1,Zhang Yuhang1,Yan Tianshuo1,Guo Qing2ORCID,Luo Kai1

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

2. Xi’an Precision Machinery Research Institute, Xi’an 710075, China

Abstract

To facilitate the high operating pressure of a novel underwater power cycle, the potential of Roots pumps for pressurizing gas-liquid mixtures is experimentally investigated in this paper. The experimental facility is constructed, and the effects of inlet gas volume fractions and rotational speeds on the pump performance are discussed. The results show that the increased inlet gas volume fraction is beneficial to increasing the pump efficiency. This is associated with the increased pressure ratio and the gas-liquid mixture compressibility. In addition, the increases in rotational speed and liquid phase volume fraction negatively affect the pump’s efficiency. These phenomena are caused by the resulting high pressure difference and subsequently the back-flow from the pump outlet, thereby increasing the gap leakage and decreasing the Roots pump’s operating efficiency. The numerical model is further compared against experimental resultsk and the maximum difference is found to be less than 7.53%. This paper experimentally tests the potential of Roots pumps for pressurizing gas-liquid mixtures.

Funder

National Natural Science Foundation of China

Innovation Capability Support Program of Shaanxi

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3