A Comparative Study on Centrifugal Pump Designs and Two-Phase Flow Characteristic under Inlet Gas Entrainment Conditions

Author:

Si QiaoruiORCID,Bois Gérard,Liao Minquan,Zhang Haoyang,Cui Qianglei,Yuan Shouqi

Abstract

Capability for handling entrained gas is an important design consideration for centrifugal pumps used in petroleum, chemistry, nuclear applications. An experimental evaluation on their two phase performance is presented for two centrifugal pumps working under air-water mixture fluid conditions. The geometries of the two pumps are designed for the same flow rate and shut off head coefficient with the same impeller rotational speed. Overal pump performance and unsteady pressure pulsation information are obtained at different rotational speeds combined with various inlet air void fractions (α0) up to pump stop condition. As seen from the test results, pump 2 is able to deliver up to 10% two-phase mixtures before pump shut-off, whereas pump 1 is limited to 8%. In order to understand the physics of this flow phenomenon, a full three-dimensional unsteady Reynolds Average Navier-Stokes (3D-URANS) calculation using the Euler–Euler inhomogeneous method are carried out to study the two phase flow characteristics of the model pump after corresponding experimental verification. The internal flow characteristics inside the impeller and volute are physically described using the obtained air distribution, velocity streamline, vortex pattern and pressure pulsation results under different flow rates and inlet void fractions. Pump performances would deteriorate during pumping two-phase mixture fluid compared with single flow conditions due to the phase separating effect. Some physical explanation about performance improvements on handing maximum acceptable inlet two phase void fractions capability of centrifugal pumps are given.

Funder

National Natural Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3