Efficient Multi-Scale Stereo-Matching Network Using Adaptive Cost Volume Filtering

Author:

Jeon Suyeon,Heo Yong SeokORCID

Abstract

While recent deep learning-based stereo-matching networks have shown outstanding advances, there are still some unsolved challenges. First, most state-of-the-art stereo models employ 3D convolutions for 4D cost volume aggregation, which limit the deployment of networks for resource-limited mobile environments owing to heavy consumption of computation and memory. Although there are some efficient networks, most of them still require a heavy computational cost to incorporate them to mobile computing devices in real-time. Second, most stereo networks indirectly supervise cost volumes through disparity regression loss by using the softargmax function. This causes problems in ambiguous regions, such as the boundaries of objects, because there are many possibilities for unreasonable cost distributions which result in overfitting problem. A few works deal with this problem by generating artificial cost distribution using only the ground truth disparity value that is insufficient to fully regularize the cost volume. To address these problems, we first propose an efficient multi-scale sequential feature fusion network (MSFFNet). Specifically, we connect multi-scale SFF modules in parallel with a cross-scale fusion function to generate a set of cost volumes with different scales. These cost volumes are then effectively combined using the proposed interlaced concatenation method. Second, we propose an adaptive cost-volume-filtering (ACVF) loss function that directly supervises our estimated cost volume. The proposed ACVF loss directly adds constraints to the cost volume using the probability distribution generated from the ground truth disparity map and that estimated from the teacher network which achieves higher accuracy. Results of several experiments using representative datasets for stereo matching show that our proposed method is more efficient than previous methods. Our network architecture consumes fewer parameters and generates reasonable disparity maps with faster speed compared with the existing state-of-the art stereo models. Concretely, our network achieves 1.01 EPE with runtime of 42 ms, 2.92 M parameters, and 97.96 G FLOPs on the Scene Flow test set. Compared with PSMNet, our method is 89% faster and 7% more accurate with 45% fewer parameters.

Funder

BK21 FOUR program of the National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference39 articles.

1. Stereo matching algorithm for autonomous positioning of underground mine robots;Huang;Proceedings of the International Conference on Robots & Intelligent System,2018

2. Dense stereo matching with application to augmented reality;Zenati;Proceedings of the IEEE International Conference on Signal Processing and Communications,2007

3. Distance estimation in virtual reality and augmented reality: A survey;El Jamiy;Proceedings of the IEEE International Conference on Electro Information Technology,2019

4. Deepdriving: Learning affordance for direct perception in autonomous driving;Chen;Proceedings of the IEEE International Conference on Computer Vision,2015

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3