Multi-Scale Cost Attention and Adaptive Fusion Stereo Matching Network

Author:

Liu Zhenguo1,Li Zhao1ORCID,Ao Wengang2,Zhang Shaoshuang1,Liu Wenlong1,He Yizhi1

Affiliation:

1. College of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China

2. School of Mechanical Engineering, Chongqing Technology and Business University, Chongqing 400000, China

Abstract

At present, compared to 3D convolution, 2D convolution is less computationally expensive and faster in stereo matching methods based on convolution. However, compared to the initial cost volume generated by calculation using a 3D convolution method, the initial cost volume generated by 2D convolution in the relevant layer lacks rich information, resulting in the area affected by illumination in the disparity map having a lower robustness and thus affecting its accuracy. Therefore, to address the lack of rich cost volume information in the 2D convolution method, this paper proposes a multi-scale adaptive cost attention and adaptive fusion stereo matching network (MCAFNet) based on AANet+. Firstly, the extracted features are used for initial cost calculation, and the cost volume is input into the multi-scale adaptive cost attention module to generate attention weight, which is then combined with the initial cost volume to suppress irrelevant information and enrich the cost volume. Secondly, the cost aggregation part of the model is improved. A multi-scale adaptive fusion module is added to improve the fusion efficiency of cross-scale cost aggregation. In the Scene Flow dataset, the EPE is reduced to 0.66. The error matching rates in the KITTI2012 and KITTI2015 datasets are 1.60% and 2.22%, respectively.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3