An application of stereo matching algorithm based on transfer learning on robots in multiple scenes

Author:

Bi Yuanwei,Li Chuanbiao,Tong Xiangrong,Wang Guohui,Sun Haiwei

Abstract

AbstractRobot vision technology based on binocular vision holds tremendous potential for development in various fields, including 3D scene reconstruction, target detection, and autonomous driving. However, current binocular vision methods used in robotics engineering have limitations such as high costs, complex algorithms, and low reliability of the generated disparity map in different scenes. To overcome these challenges, a cross-domain stereo matching algorithm for binocular vision based on transfer learning was proposed in this paper, named Cross-Domain Adaptation and Transfer Learning Network (Ct-Net), which has shown valuable results in multiple robot scenes. First, this paper introduces a General Feature Extractor to extract rich general feature information for domain adaptive stereo matching tasks. Then, a feature adapter is used to adapt the general features to the stereo matching network. Furthermore, a Domain Adaptive Cost Optimization Module is designed to optimize the matching cost. A disparity score prediction module was also embedded to adaptively adjust the search range of disparity and optimize the cost distribution. The overall framework was trained using a phased strategy, and ablation experiments were conducted to verify the effectiveness of the training strategy. Compared with the prototype PSMNet, on KITTI 2015 benchmark, the 3PE-fg of Ct-Net in all regions and non-occluded regions decreased by 19.3 and 21.1% respectively, meanwhile, on the Middlebury dataset, the proposed algorithm improves the sample error rate at least 28.4%, which is the Staircase sample. The quantitative and qualitative results obtained from Middlebury, Apollo, and other datasets demonstrate that Ct-Net significantly improves the cross-domain performance of stereo matching. Stereo matching experiments in real-world scenes have shown that it can effectively address visual tasks in multiple scenes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3