Spatiotemporal Regulation of Circular RNA Expression during Liver Development of Chinese Indigenous Ningxiang Pigs

Author:

Chen Wenwu,Ma Haiming,Li Biao,Yang Fang,Xiao Yu,Gong Yan,Li Zhi,Li Ting,Zeng Qinghua,Xu Kang,Duan YehuiORCID

Abstract

Background: There have been many studies on the relationship between circRNAs and fat deposition. Although the liver is a central organ for fat metabolism, there are few reports on the relationship between circRNAs in the liver and fat deposition. Methods: In this study, we systematically analyzed circular RNAs in the liver of Ningxiang pigs, at four time points after birth (30 days, 90 days, 150 days and 210 days). Results: A total of 3705 circRNAs were coexpressed in four time periods were found, and KEGG analysis showed that the significantly upregulated pathways were mainly enriched in lipid metabolism and amino acid metabolism, while significantly downregulated pathways were mainly related to signal transduction, such as ECM–receptor interaction, MAPK signaling pathway, etc. Short time-series expression miner (STEM) analysis showed multiple model spectra that were significantly enriched over time in the liver. By constructing a competing endogenous RNA (ceRNA) regulatory network, 9187 pairs of networks related to the change in development time were screened. Conclusions: The expression profiles of circRNAs in Ningxiang pig liver were revealed at different development periods, and it was determined that there is differential coexpression. Through enrichment analysis of these circRNAs, it was revealed that host genes were involved in metabolism-related signaling pathways and fatty acid anabolism. Through STEM analysis, many circRNAs involved in fat metabolism, transport, and deposition pathways were screened, and the first circRNA–miRNA–mRNA regulation network map in Ningxiang pig liver was constructed. The highly expressed circRNAs related to fat deposition were verified and were consistent with RNA-Seq results.

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3