Molecular Mechanisms of circRNA–miRNA–mRNA Interactions in the Regulation of Goose Liver Development

Author:

Liu Shuibing12,Li Chuan13,Hu Xiaolong12,Mao Huirong12,Liu Sanfeng12,Chen Biao12ORCID

Affiliation:

1. College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China

2. Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China

3. Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China

Abstract

The liver, a crucial metabolic organ in animals, is responsible for the synthesis, breakdown, and transport of lipids. However, the regulatory mechanisms involving both coding and noncoding RNAs that oversee the development of the goose liver remain elusive. This study aimed to fill this knowledge gap by conducting RNA-seq to profile the expression of circular RNAs (circRNAs) and microRNAs (miRNAs) during goose liver development. We analyzed circRNAs in liver samples from Sichuan white geese at three developmental stages: posthatching day 0, 10 weeks (fast growth stage), and 30 weeks (sexual maturation stage). Our findings revealed 11,079 circRNAs and 994 miRNAs, among which the differentially expressed circRNAs and miRNAs were significantly enriched in pathways such as fatty acid biosynthesis, degradation, and metabolism. Further analysis of the target genes of the differentially expressed miRNAs revealed enrichment in pathways related to fatty acid biosynthesis, metabolism, PPAR signaling, DNA replication, and the cell cycle. We also established circRNA–miRNA–mRNA regulatory networks, identifying key regulatory factors and miRNAs. In conclusion, our study offers valuable insights into the complex interplay of circRNA–miRNA–mRNA interactions during goose liver development, and illuminates the molecular pathways that regulate this vital life function.

Funder

Department of Agriculture and Rural Affairs of Jiangxi Province, China

Science and Technology Program of Guangdong Province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3