Nanoscale Assembly of Copper Bearing-Sleeve via Cold-Welding: A Molecular Dynamics Study

Author:

Zhou Hongjian,Li Jiejie,Xian Yuehui,Hu Guoming,Li Xiaoyong,Xia ReORCID

Abstract

A bearing is an important component in contemporary machinery and equipment, whose main function is to support the mechanical rotator, reduce the friction coefficient during its movement, and guarantee the turning accuracy. However, assembly of a nanoscale bearing and sleeve is a challenging process for micro-nano mechanical manufacturers. Hence, we show the cold-welding mechanism of a copper nanobearing-nanosleeve via molecular dynamic simulations. We demonstrate that it is feasible to assemble a bearing and sleeve at the nanoscale to form a stable mechanism. The effect of temperature in the range of 150 to 750 K is investigated. As the temperature rises, the mechanical strength and the weld stress of the welded structures markedly decrease, accompanied by the observation of increasing disorder magnitude. This comparison study is believed to facilitate future mechanical processing and structural nano-assembly of metallic elements for better mechanical performance.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3