Comparative Study of Univariate and Multivariate Long Short-Term Memory for Very Short-Term Forecasting of Global Horizontal Irradiance

Author:

Mandal Ashis KumarORCID,Sen RiktaORCID,Goswami Saptarsi,Chakraborty Basabi

Abstract

Accurate global horizontal irradiance (GHI) forecasting is crucial for efficient management and forecasting of the output power of photovoltaic power plants. However, developing a reliable GHI forecasting model is challenging because GHI varies over time, and its variation is affected by changes in weather patterns. Recently, the long short-term memory (LSTM) deep learning network has become a powerful tool for modeling complex time series problems. This work aims to develop and compare univariate and several multivariate LSTM models that can predict GHI in Guntur, India on a very short-term basis. To build the multivariate time series models, we considered all possible combinations of temperature, humidity, and wind direction variables along with GHI as inputs and developed seven multivariate models, while in the univariate model, we considered only GHI variability. We collected the meteorological data for Guntur from 1 January 2016 to 31 December 2016 and built 12 datasets, each containing variability of GHI, temperature, humidity, and wind direction of a month. We then constructed the models, each of which measures up to 2 h ahead of forecasting of GHI. Finally, to measure the symmetry among the models, we evaluated the performances of the prediction models using root mean square error (RMSE) and mean absolute error (MAE). The results indicate that, compared to the univariate method, each multivariate LSTM performs better in the very short-term GHI prediction task. Moreover, among the multivariate LSTM models, the model that incorporates the temperature variable with GHI as input has outweighed others, achieving average RMSE values 0.74 W/m2–1.5 W/m2.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3