Design, Implementation and Comparative Analysis of Three Models for Estimation of Solar Radiation Components on a Horizontal Surface

Author:

Rougab Ilyas1ORCID,Barambones Oscar2ORCID,Silaa Mohammed Yousri2,Cheknane Ali3

Affiliation:

1. Laboratory for Analysis and Control of Energy Systems and Electrical Networks, Department of Electronic, University of Amar Telidji, Laghouat 03000, Algeria

2. Engineering School of Vitoria, University of the Basque Country UPV/EHU, Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain

3. Materials, Energy Systems, Renewable Energies and Energy Management Laboratory, University of Amar Telidji, Laghouat 03000, Algeria

Abstract

Solar radiation data play a pivotal role in harnessing solar energy. Unfortunately, the availability of these data is limited due to the sparse distribution of meteorological stations worldwide. This paper introduces and simulates three models designed for estimating and predicting global solar radiation at ground level. Furthermore, it conducts an in-depth analysis and comparison of the simulation results derived from these models, utilizing measured data from selected sites in Algeria where such information is accessible. The focus of our study revolves around three empirical models: Capderou, Lacis and Hansen, and Liu and Jordan. These models utilize day number and solar factor as input parameters, along with the primary site’s geographical coordinates—longitude, latitude, and altitude. Additionally, meteorological parameters such as relative humidity, temperature, and pressure are incorporated into the models. The objective is to estimate global solar radiation for any given day throughout the year at the specified location. Upon simulation, the results highlight that the Capderou model exhibits superior accuracy in approximating solar components, demonstrating negligible deviations between real and estimated values, especially under clear-sky conditions. However, these models exhibit certain limitations in adverse weather conditions. Consequently, alternative approaches, such as fuzzy logic methods or models based on satellite imagery, become essential for accurate predictions in inclement weather scenarios.

Funder

Basque Government

Diputación Foral de Álava

UPV/EHU

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3