Coupled MOP and PLUS-SA Model Research on Land Use Scenario Simulations in Zhengzhou Metropolitan Area, Central China

Author:

Guo Pengfei123,Wang Haiying124ORCID,Qin Fen124,Miao Changhong25,Zhang Fangfang6

Affiliation:

1. College of Geography and Environmental Science, Henan University, Kaifeng 475004, China

2. Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China

3. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

4. Institute of Urban Big Data, Henan University, Kaifeng 475004, China

5. Key Research Institute of Yellow River Civilization and Sustainable Development, Henan University, Kaifeng 475004, China

6. School of Resources and Environment/Collaborative Innovation Center of Urban-Rural Coordinated Development, Henan University of Economics and Law, Zhengzhou 450046, China

Abstract

Land use simulations are critical in predicting the impact of land use change (LUC) on the Earth. Various assumptions and policies influence land use structure and are a key factor in decisions made by policymakers. Meanwhile, the spatial autocorrelation effect between land use types has rarely been considered in existing land use spatial simulation models, and the simulation accuracy needs to be further improved. Thus, in this study, the driving mechanisms of LUC are analyzed. The quantity demand and spatial distribution of land use are predicted under natural development (ND), economic development (ED), ecological protection (EP), and sustainability development (SD) scenarios in Zhengzhou based on the coupled Multi-Objective Programming (MOP) model and the Patch-generating Land Use Simulation model (PLUS) considering Spatial Autocorrelation (PLUS-SA). We conclude the following. (1) The land use type in Zhengzhou was mainly cultivated land, and 83.85% of the land for urban expansion was cultivated land from 2000 to 2020. The reduction in forest from 2010 to 2020 was less than that from 2000 to 2010 due to the implementation of the policy in which farmland is transformed back into forests. (2) The accuracy of PLUS-SA was better than that of the traditional PLUS and Future Land Use Simulation (FLUS) models, and its Kappa coefficient, overall accuracy, and FOM were 0.91, 0.95, and 0.29, respectively. (3) Natural factors (temperature, precipitation, and DEM) contributed significantly to the expansion of cultivated land, and the increase in forest, grass, and construction land was greatly affected by socioeconomic factors (population, GDP, and proximity to town). (4) The land use structure will be more in line with the current requirements for sustainable urban development in the SD scenario, and the economic and ecological benefits will increase by 0.75 × 104 billion CNY and 1.71 billion CNY, respectively, in 2035 compared with those in 2020. The PLUS-SA model we proposed had higher simulation accuracy in Zhengzhou Compared with the traditional PLUS and FLUS models, and our research framework can provide a basis for decision-makers to formulate sustainable land use development policies to achieve high-quality and sustainable urban development.

Funder

National Major Project of High-Resolution Earth Observation System

University Young Key Teacher Training Plan of Henan Province

Natural Science Foundation of Henan

Key Scientific Research Project Plans of Higher Education Institutions of Henan

Technology Development Plan Project of Kaifeng

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3