Improvement of Hexacopter UAVs Attitude Parameters Employing Control and Decision Support Systems

Author:

Stamate Mihai-Alin1,Pupăză Cristina1ORCID,Nicolescu Florin-Adrian1,Moldoveanu Cristian-Emil2ORCID

Affiliation:

1. Faculty of Industrial Engineering and Robotics, University Politehnica of Bucharest, 060042 Bucharest, Romania

2. Faculty of Integrated Weapon Systems, Military Technical Academy “Ferdinand I”, 050141 Bucharest, Romania

Abstract

Today, there is a conspicuous upward trend for the development of unmanned aerial vehicles (UAVs), especially in the field of multirotor drones. Their advantages over fixed-wing aircrafts are that they can hover, which allows their usage in a wide range of remote surveillance applications: industrial, strategic, governmental, public and homeland security. Moreover, because the component market for this type of vehicles is in continuous growth, new concepts have emerged to improve the stability and reliability of the multicopters, but efficient solutions with reduced costs are still expected. This work is focused on hexacopter UAV tests carried out on an original platform both within laboratory and on unrestricted open areas during the start–stop manoeuvres of the motors to verify the operational parameters, hover flight, the drone stability and reliability, as well as the aerodynamics and robustness at different wind speeds. The flight parameters extracted from the sensor systems’ comprising accelerometers, gyroscopes, magnetometers, barometers, GPS antenna and EO/IR cameras were analysed, and adjustments were performed accordingly, when needed. An FEM simulation approach allowed an additional decision support platform that expanded the experiments in the virtual environment. Finally, practical conclusions were drawn to enhance the hexacopter UAV stability, reliability and manoeuvrability.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3