Author:
Kulathunga Geesara,Hamed Hany,Klimchik Alexandr
Abstract
AbstractThis paper presents a technique to model the residual dynamics between a high-level planner and a low-level controller by considering reference trajectory tracking in a cluttered environment as an example scenario. We focus on minimising residual dynamics that arise due to only the kinematical modelling of high-level planning. The kinematical modelling is sufficient for such scenarios due to safety constraints and aggressive manoeuvres that are difficult to perform when the environment is cluttered and dynamic. We used a simplified motion model to represent the motion of the quadrotor when formulating the high-level planner. The Sparse Gaussian Process Regression-based technique is proposed to model the residual dynamics. Recently proposed Data-Driven MPC is targeting aggressive manoeuvres without considering obstacle constraints. The proposed technique is compared with Data-Driven MPC to estimate the residual dynamics error without considering obstacle constraints. The comparison results yield that the proposed technique helps to reduce the nominal model error by a factor of 2 on average. Further, the proposed complete framework was compared with four other trajectory-tracking approaches in terms of tracking the reference trajectory without colliding with obstacles. The proposed approach outperformed the others with less flight time without losing computational efficiency.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Adaptive Contact-Implicit Model Predictive Control with Online Residual Learning;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13