Residual dynamics learning for trajectory tracking for multi-rotor aerial vehicles

Author:

Kulathunga Geesara,Hamed Hany,Klimchik Alexandr

Abstract

AbstractThis paper presents a technique to model the residual dynamics between a high-level planner and a low-level controller by considering reference trajectory tracking in a cluttered environment as an example scenario. We focus on minimising residual dynamics that arise due to only the kinematical modelling of high-level planning. The kinematical modelling is sufficient for such scenarios due to safety constraints and aggressive manoeuvres that are difficult to perform when the environment is cluttered and dynamic. We used a simplified motion model to represent the motion of the quadrotor when formulating the high-level planner. The Sparse Gaussian Process Regression-based technique is proposed to model the residual dynamics. Recently proposed Data-Driven MPC is targeting aggressive manoeuvres without considering obstacle constraints. The proposed technique is compared with Data-Driven MPC to estimate the residual dynamics error without considering obstacle constraints. The comparison results yield that the proposed technique helps to reduce the nominal model error by a factor of 2 on average. Further, the proposed complete framework was compared with four other trajectory-tracking approaches in terms of tracking the reference trajectory without colliding with obstacles. The proposed approach outperformed the others with less flight time without losing computational efficiency.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3