Abstract
In industrial devices like heat recovery systems, heat pumps, as well as symmetric and complex engineering systems, a nano fluid mixture is used. Regarding the nature of the energy sources (thermal or thermal and electrical), many physical systems could represent possible applications in manufactural activities. The presence of nanoparticles inside a solvent is of great interest in order to optimize the efficacy of the nano-technology systems. The present work deals with heat and mass transfer through a vertical channel where an alumina/water film mixture flows on one of its plates. For simulation, we use a numerical method under mixed convection during water/alumina nano fluid evaporation. We heat the flown plate uniformly while the other is dry and exchange heat with a constant coefficient. The gas mixture enters channel with a constant profile. Results show that an augmentation of the volume rate of the nanoparticle disadvantages evaporation if the heating is absent. Otherwise, if the heating exists, an increasing volume rate of the nanoparticle advantages evaporation. We found also that the film velocity behavior when the volume rate of the nanoparticle varies, independent of the heating.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献