Facile Use of Silver Nanoparticles-Loaded Alumina/Silica in Nanofluid Formulations for Enhanced Catalytic Performance toward 4-Nitrophenol Reduction

Author:

Mannu RashmiORCID,Karthikeyan VaithinathanORCID,Veerappa Murugendrappa Malalkere,Roy Vellaisamy A. L.,Gopalan Anantha-IyengarORCID,Saianand GopalanORCID,Sonar PrashantORCID,Xu Binrui,Lee Kwang-Pill,Kim Wha-Jung,Lee Dong-EunORCID,Kannan VenkatramananORCID

Abstract

The introduction of toxic chemicals into the environment can result in water pollution leading to the degradation of biodiversity as well as human health. This study presents a new approach of using metal oxides (Al2O3 and SiO2) modified with a plasmonic metal (silver, Ag) nanoparticles (NPs)-based nanofluid (NF) formulation for environmental remediation purposes. Firstly, we prepared the Al2O3 and SiO2 NFs of different concentrations (0.2 to 2.0 weight %) by ultrasonic-assisted dispersion of Al2O3 and SiO2 NPs with water as the base fluid. The thermo-physical (viscosity, activation energy, and thermal conductivity), electrical (AC conductivity and dielectric constant) and physical (ultrasonic velocity, density, refractive index) and stability characteristics were comparatively evaluated. The Al2O3 and SiO2 NPs were then catalytically activated by loading silver NPs to obtain Al2O3/SiO2@Ag composite NPs. The catalytic reduction of 4-nitrophenol (4-NP) with Al2O3/SiO2@Ag based NFs was followed. The catalytic efficiency of Al2O3@Ag NF and SiO2@Ag NF, for the 4-NP catalysis, is compared. Based on the catalytic rate constant evaluation, the catalytic reduction efficiency for 4-NP is found to be superior for 2% weight Al2O3@Ag NF (92.9 × 10−3 s−1) as compared to the SiO2@Ag NF (29.3 × 10−3 s−1). Importantly, the enhanced catalytic efficiency of 2% weight Al2O3@Ag NF for 4-NP removal is much higher than other metal NPs based catalysts reported in the literature, signifying the importance of NF formulation-based catalysis.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3