Manganese and Graphene Included Titanium Dioxide Composite Nanowires: Fabrication, Characterization and Enhanced Photocatalytic Activities

Author:

Lee Jun-Cheol,Gopalan Anantha-IyengarORCID,Saianand GopalanORCID,Lee Kwang-Pill,Kim Wha-Jung

Abstract

We report the detailed microstructural, morphological, optical and photocatalytic studies of graphene (G) and manganese (Mn) co-doped titanium dioxide nanowires (TiO2(G–Mn) NWs) prepared through facile combined electrospinning–hydrothermal processes. The as-prepared samples were thoroughly characterized using X-ray diffraction (XRD), transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and diffuse reflectance spectroscopy (DRS). XRD studies reveal the formation of mixed anatase-rutile phases or rutile phase depending on the dopant (Mn) precursor concentrations in the electrospinning dope and calcination temperature. The evaluation of lattice parameters revealed that the incorporation of Mn species and carbon atoms in to the lattice of anatase or rutile TiO2 could occur through substituting the sites of oxygen atoms. XPS results confirm the existence of Mn2+/Mn3+ within the TiO2 NW. Raman spectroscopy provides the evidence for structural modification because of the graphene inclusion in TiO2 NW. The optical band gap of G–Mn including TiO2 is much lower than pristine TiO2 as confirmed through UV-vis DRS. The photocatalytic activities were evaluated by nitric oxide (NOx) degradation tests under visible light irradiation. Superior catalytic activity was witnessed for rutile G–Mn-co-doped TiO2 NW over their anatase counterparts. The enhanced photocatalytic property was discussed based on the synergistic effects of doped G and Mn atoms and explained by plausible mechanisms.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3