Go Wider: An Efficient Neural Network for Point Cloud Analysis via Group Convolutions

Author:

Chen Can,Zanotti Fragonara LucaORCID,Tsourdos AntoniosORCID

Abstract

In order to achieve a better performance for point cloud analysis, many researchers apply deep neural networks using stacked Multi-Layer-Perceptron (MLP) convolutions over an irregular point cloud. However, applying these dense MLP convolutions over a large amount of points (e.g., autonomous driving application) leads to limitations due to the computation and memory capabilities. To achieve higher performances but decrease the computational complexity, we propose a deep-wide neural network, named ShufflePointNet, which can exploit fine-grained local features, but also reduce redundancies using group convolution and channel shuffle operation. Unlike conventional operations that directly apply MLPs on the high-dimensional features of a point cloud, our model goes “wider” by splitting features into groups with smaller depth in advance, having the respective MLP computations applied only to a single group, which can significantly reduce complexity and computation. At the same time, we allow communication between groups by shuffling the feature channel to capture fine-grained features. We further discuss the multi-branch method for wider neural networks being also beneficial to feature extraction for point clouds. We present extensive experiments for shape classification tasks on a ModelNet40 dataset and semantic segmentation task on large scale datasets ShapeNet part, S3DIS and KITTI. Finally, we carry out an ablation study and compare our model to other state-of-the-art algorithms to show its efficiency in terms of complexity and accuracy.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference45 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3