Deep Neural Network for Point Sets Based on Local Feature Integration

Author:

Chu HaoORCID,He Zhenquan,Liu Shangdong,Liu Chuanwen,Yang Jiyuan,Wang FeiORCID

Abstract

The research of object classification and part segmentation is a hot topic in computer vision, robotics, and virtual reality. With the emergence of depth cameras, point clouds have become easier to collect and increasingly important because of their simple and unified structures. Recently, a considerable number of studies have been carried out about deep learning on 3D point clouds. However, data captured directly by sensors from the real-world often encounters severe incomplete sampling problems. The classical network is able to learn deep point set features efficiently, but it is not robust enough when the method suffers from the lack of point clouds. In this work, a novel and general network was proposed, whose effect does not depend on a large amount of point cloud input data. The mutual learning of neighboring points and the fusion between high and low feature layers can better promote the integration of local features so that the network can be more robust. The specific experiments were conducted on the ScanNet and Modelnet40 datasets with 84.5% and 92.8% accuracy, respectively, which proved that our model is comparable or even better than most existing methods for classification and segmentation tasks, and has good local feature integration ability. Particularly, it can still maintain 87.4% accuracy when the number of input points is further reduced to 128. The model proposed has bridged the gap between classical networks and point cloud processing.

Funder

the Natural Science Foundation of Liaoning Province of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3