Robust GICP-Based 3D LiDAR SLAM for Underground Mining Environment

Author:

Ren Zhuli,Wang Liguan,Bi LinORCID

Abstract

Unmanned mining is one of the most effective methods to solve mine safety and low efficiency. However, it is the key to accurate localization and mapping for underground mining environment. A novel graph simultaneous localization and mapping (SLAM) optimization method is proposed, which is based on Generalized Iterative Closest Point (GICP) three-dimensional (3D) point cloud registration between consecutive frames, between consecutive key frames and between loop frames, and is constrained by roadway plane and loop. GICP-based 3D point cloud registration between consecutive frames and consecutive key frames is first combined to optimize laser odometer constraints without other sensors such as inertial measurement unit (IMU). According to the characteristics of the roadway, the innovative extraction of the roadway plane as the node constraint of pose graph SLAM, in addition to automatic removing the noise point cloud to further improve the consistency of the underground roadway map. A lightweight and efficient loop detection and optimization based on rules and GICP is designed. Finally, the proposed method was evaluated in four scenes (such as the underground mine laboratory), and compared with the existing 3D laser SLAM method (such as Lidar Odometry and Mapping (LOAM)). The results show that the algorithm could realize low drift localization and point cloud map construction. This method provides technical support for localization and navigation of underground mining environment.

Funder

National Key Research and Development Plan

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3